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Shock waves, dead zones and particle-free regions form when a thin surface avalanche
of granular material flows around an obstacle or over a change in the bed topography.
Understanding and modelling these flows is of considerable practical interest for
industrial processes, as well as for the design of defences to protect buildings, struc-
tures and people from snow avalanches, debris flows and rockfalls. These flow
phenomena also yield useful constitutive information that can be used to improve
existing avalanche models. In this paper a simple hydraulic theory, first suggested in
the Russian literature, is generalized to model quasi-two-dimensional flows around
obstacles. Exact and numerical solutions are then compared with laboratory experi-
ments. These indicate that the theory is adequate to quantitatively describe the
formation of normal shocks, oblique shocks, dead zones and granular vacua. Such
features are generated by the flow around a pyramidal obstacle, which is typical of
some of the defensive structures in use today.

1. Introduction
Rapid granular free-surface flows, or granular avalanches, are among the most

important particle transport mechanisms in industrial processes and our natural
environment. These high-density cohesionless flows down relatively flat frictional
surfaces, are invariant over a surprisingly broad range of scales; starting at a few
centimetres, such as pouring cornflakes into a bowl at breakfast, and going right up
to geophysical scale snow-slab avalanches of up to a million cubic metres in size.
In industry they often occur as part of complicated granular phase-transition flows,
in which the granular material behaves as a fluid-like avalanche close to the free
surface and as a solid in a large region beneath. This is typical of flows in partially
filled rotating drums, which are used to mix or segregate dissimilar grains (Metcalfe
et al. 1995; McCarthy et al. 1996; Gray & Hutter 1997; Hill et al. 1999; Shinbrot,
Alexander & Muzzio 1999; Shinbrot & Muzzio 2000; Gray 2001), or whenever
particles are poured out of containers or deposited to form heaps (Makse et al. 1997;
Gray & Hutter 1998; Baxter et al. 1998). The magnitude of industrial applications
is huge: Shinbrot & Muzzio (2000) estimate that US production alone of granular
pharmaceuticals, foods and bulk chemicals amounts to a trillion kilograms per year,
and most of these materials will be mixed, segregated, poured or deposited in piles at
some stage of the manufacturing process.

Over the past decade significant progress has been made in the mathematical
description of granular avalanches. Savage & Hutter (1989) derived a theory for the
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two-dimensional plane motion of an incompressible Mohr–Coulomb material sliding
down a rigid impenetrable surface, at which the body experiences dry Coulomb
friction. The shallowness of the flow was exploited to integrate the leading-order mass
and momentum balances through the avalanche depth to obtain a one-dimensional
theory along the flow direction for the avalanche thickness and the downslope
velocity. This theory was used to calculate the spreading of granular avalanches in
inclined channels and the computed results and similarity solutions were in very good
agreement with laboratory experiments. To calculate the flow from initiation on a
steep slope to run-out on a horizontal plane, Savage & Hutter (1991) introduced
a simple slope-fitted curvilinear coordinate system, which allowed the inclination
angle to slowly change along the downslope direction. The theory has been able to
predict key qualitative features such as the division of an avalanche into two distinct
parts as it flowed over a suitably shaped bump (Greve & Hutter 1993) and the
formation of normal shocks (Gray & Hutter 1997), which were not anticipated when
the theory was originally formulated. The versatility of the Savage–Hutter theory
has also been demonstrated by its generalization to quasi-two-dimensional depth-
integrated flows down plane chutes (Hutter et al. 1993; Greve, Koch & Hutter 1994;
Koch, Greve & Hutter 1994) and over shallow three-dimensional topography (Gray,
Wieland & Hutter 1999; Wieland, Gray & Hutter 1999), as well as to steady-state
flow in rotating drums (Gray 2001).

At first glance the Savage–Hutter (1989) theory has a very similar mathematical
structure to the shallow-water equations of hydrodynamics. However, the constitutive
properties significantly complicate the model by introducing a highly nonlinear earth-
pressure coefficient into the theory, which pre-multiplies the pressure in the downslope
momentum balance. The idea behind this term stems from a classical problem of soil
loads on retaining walls in civil engineering. Savage & Hutter (1989) used the Mohr–
Coulomb and basal sliding laws to show that the earth pressure is a piecewise
constant function of the downslope velocity divergence. Two stress states are possible,
but the Mohr–Coulomb law does not provide enough information to say which state
is associated with a particular deformation. Following the retaining wall analogy the
smaller active value was associated with extensive motions and the larger passive
value was associated with compressive motions, and Savage & Hutter assumed that
there was a jump transition between the two states when the downslope divergence
was zero.

To date, there is no compelling experimental evidence to suggest that such a sharp
stress transition actually takes place and it is of interest to investigate other constitutive
models. An alternative hydraulic closure has been suggested in the Russian literature
(Grigorian, Eglit & Iakimov 1967; Kulikovskii & Eglit 1973; Eglit 1983), by making
a direct analogy between granular avalanches and shallow-water flows. Gray et al.
(1999) and Gray (2001) have found that this simpler model also gives very promising
results on steep slopes and in industrial rotating drum flows. This paper shows that
the hydraulic model is sufficient to capture key qualitative features, such as shock
waves, dead (no-flow) zones and particle-free regions, which commonly occur in rapid
granular flows. These features are not only interesting in their own right, but contain
a great deal of constitutive information that can be used to improve existing models.

2. Governing equations
The hydraulic avalanche models (Grigorian et al. 1967; Kulikovskii & Eglit 1973;

Eglit 1983) were postulated by direct analogy with the shallow-water equations. In
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order to learn more about the constitutive properties and the assumptions implicit
in these models, we now generalize them to model three-dimensional depth-averaged
flows over complex topography. As we shall show, there are a number of subtle
differences to the assumptions present in the Savage & Hutter (1989) theory.

A fixed Cartesian coordinate system Oxyz is introduced with the x-axis inclined
along the downslope direction, at an angle ζ to the horizontal, the y-axis along the
cross-slope direction and the z-axis is the upward pointing normal. The velocity u has
components (u, v, w) in the downslope, cross-slope and normal directions, respectively.
During plastic yield granular materials exhibit dilatancy effects (Reynolds 1885), but
once failure has occurred and the grains are fluidized, it is reasonable to assume that
material is incompressible with constant uniform density, ρ, as a first approximation.
The conservative form of the mass and momentum balances reduces to

∇ · u = 0, (2.1a)

ρ{ut + ∇ · (u ⊗ u)} = ∇ · T + ρg, (2.1b)

where T is the Cauchy stress, ⊗ is the dyadic product, ∇ is the gradient operator, the
subscript ( )t denotes partial differentiation with respect to time t and g is gravitational
acceleration.

In the Savage & Hutter (1989) theory the Cauchy stress is assumed to satisfy a
Mohr–Coulomb flow law. In the hydraulic theories an isotropic pressure field, p, must
clearly be included, but it is not immediately apparent that there must also be an
additional deviatoric stress, σ , to transmit the basal traction through the avalanche
depth. The Cauchy stress is therefore of the form

T = −p1 + σ . (2.2)

where 1 is the unit tensor and σ has components σxx , σyy , σzz, σxy , σxz, σyz. Derivatives
will be denoted using subscript notation with the exception of the tensor components
where differentiation will be denoted by the subscripts after a comma, e.g. σxy,z is the
z-derivative of σxy .

The avalanche body is subject to kinematic boundary conditions at its free surface
F s and at its base F b,

F s = z − s(x, y, t) = 0 : F s
t + us · ∇F s = 0,

F b = b(x, y, t) − z = 0 : F b
t + ub · ∇F b = 0,

}
(2.3)

where the superscripts s and b indicate the surface and base, respectively. The free
surface is traction free and the base is subject to a Coulomb sliding

Tsns = 0, (2.4a)

Tbnb =µ(nb · Tbnb)(ub/|ub|) + nb(nb · Tbnb), (2.4b)

where µ is the coefficient of friction and the surface and basal normals ns and nb are

ns = (1/ψs)(−sx, −sy, 1), ψs = {1 + (sx)
2 + (sy)

2}1/2,

nb = (1/ψb)(bx, by, −1), ψb = {1 + (bx)
2 + (by)

2}1/2.

}
(2.5)

Equation (2.4b) simply states that basal shear traction Tbnb − nb(nb · Tbnb) is propor-
tional to the normal traction (nb · Tbnb) and resists the motion. In the Savage–Hutter
theory the coefficient of friction µ = tan δ, where δ is the basal angle of friction. This
simple law describes the friction between a solid block of granular material sliding
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over a relatively flat frictional base. More complicated friction laws for rougher beds
(e.g. Pouliquen 1999) can, however, be easily incorporated into the theory.

The avalanche depth, H , is typically much smaller than its length, L, so that
the aspect ratio ε = H/L is small. This will be exploited to derive a long-wave
approximation for the flow. It is convenient to introduce non-dimensional variables,
which are denoted with a hat, by the following scalings:

(x, y, z) = L(x̂, ŷ, εẑ),

(u, v, w) = (gL)1/2(û, v̂, εŵ),

(t) = (L/g)1/2(t̂),

(p) = ρgH (p̂),

(σxy, σxz, σyz) = ρgH (µσ̂xy, µσ̂xz, µσ̂yz),

(σxx, σyy, σzz) = ρgH (µσ̂xx, µσ̂yy, εσ̂zz).


 (2.6)

The scalings for the length, velocity and time are the same as those used by Savage &
Hutter (1989), but those for the stress field are subtly different. The magnitude of
the pressure, ρgH , is set by a hydrostatic balance at the base of the avalanche;
the Coulomb dry friction law (2.4b) then implies that the shear stresses are of
magnitude µρgH . Crucially the deviatoric stress components are all assumed to be
of magnitude µρgH , with the exception of σzz, which must be of order ερgH for the
hydrostatic balance to hold. Typically the friction coefficient is fairly small. Savage &
Hutter exploited this by assuming that µ = O(εγ ), where 0 <γ < 1, which will also be
assumed here.

Applying the scalings (2.6), the mass balance and momentum balance components
in the downslope cross-slope and normal directions (2.1) are

ux + vy + wz = 0, (2.7a)

ut + (u2)x + (uv)y + (uw)z = sin ζ + εµ[σxx,x + σxy,y] + µσxz,z − εpx, (2.7b)

vt + (uv)x + (v2)y + (vw)z = +εµ[σxy,x + σyy,y] + µσyz,z − εpy, (2.7c)

ε{wt + (uw)x + (vw)y + (w2)z} = −cosζ + εµ[σxz,x + σyz,y] + εσzz,z − pz, (2.7d)

where the hats on the non-dimensional variables are now dropped. The surface and
basal kinematic conditions (2.3) become

st + ussx + vssy − ws = 0, (2.8a)

bt + ubbx + vbby − wb = 0. (2.8b)

At the surface the traction-free condition (2.4a) is

−εµ
[
σ s

xxsx + σ s
xysy

]
+ µσ s

xz + εpssx = 0, (2.9a)

−εµ
[
σ s

xysx + σ s
yysy

]
+ µσ s

yz + εpssy = 0, (2.9b)

−εµ
[
σ s

xzsx + σ s
yzsy

]
+ εσ s

zz − ps = 0, (2.9c)

and at the base the Coulomb friction law (2.4b) implies

εµ
[
σ b

xxbx + σ b
xyby

]
− µσb

xz − εpbbx = (nb · Tbnb)[µψb(u
b/|ub|) + εbx], (2.10a)

εµ
[
σ b

xybx + σ b
yyby

]
− µσb

yz − εpbby = (nb · Tbnb)[µψb(v
b/|ub|) + εby], (2.10b)

εµ
[
σ b

xzbx + σ b
yzby

]
− εσ b

zz + pb = (nb · Tbnb)[µψb(εw
b/|ub|) − 1]. (2.10c)

Anticipating a depth-integrated theory, the avalanche thickness h and depth-
averaged value of a given function are defined as

h(x, y, t) = s − b, ( ) =
1

h

∫ s

b

( ) dz. (2.11)
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Integrating the first three conservation laws in (2.7) through the avalanche depth,
using Leibnitz’s rule (e.g. Abramowitz & Stegun 1970) and substituting the kinematic
(2.8) and traction conditions at the surface (2.9) and base (2.10) of the avalanche,
yields

ht + (hu)x + (hv)y = 0, (2.12a)

(hu)t + (hu2)x + (huv)y − εµ(hσxx)x − εµ(hσxy)y + ε(hp)x = hSx, (2.12b)

(hv)t + (huv)x + (hv2)y − εµ(hσxy)x − εµ(hσyy)y + ε(hp)y = hSy, (2.12c)

where the source terms on the righthand-side are

Sx = sin ζ + h−1(nb · Tbnb)[µψb(ub/|ub|) + εbx],

Sy = h−1(nb · Tbnb)[µψb(vb/|ub|) + εby].

}
(2.13)

The reduction of the equations rests on the following approximations. In the depth-
integrated down- and cross-slope momentum balances (2.12b, c), terms of order ε

must be retained to incorporate the longitudinal pressure gradients and ensure a
non-trivial theory. Terms of order εµ are sufficiently small, however, that they can
be neglected, which eliminates gradients of the depth-integrated deviatoric stress.
Integrating the normal momentum balance component (2.7d) with respect to z and
applying the free-surface condition that ps = 0 + O(ε), implies that the leading-order
pressure is hydrostatic:

p = (s − z) cos ζ + O(ε). (2.14)

Equation (2.10c) therefore implies that the normal traction nb · Tbnb = −h cos ζ +O(ε),
which allows the source terms (2.13) to be approximated to order εµ. It also follows
that to leading order the depth-averaged pressure

p = 1
2
h cos ζ + O(ε), (2.15)

which determines the depth-averaged longitudinal pressure gradients in (2.12). Finally,
following Savage & Hutter (1989) the velocity components are assumed to be uniform
through the avalanche depth

u = ub + O(εµ), v = vb + O(εµ),

u2 = (ub)2 + O(εµ), uv = ub vb + O(εµ), v2 = (vb)2 + O(εµ),

}
(2.16)

which is motivated by numerous laboratory experiments (Savage & Hutter 1989;
Keller, Ito & Nishimura 1998) and field measurements (Dent et al. 1998). A weakness
of both the Eglit (1983) and Savage–Hutter (1989) theories is that (2.16) is a model
assumption rather than a rational approximation derived from the constitutive law
for the deviatoric stress.

The final system of conservation laws is

ht + (hu)x + (hv)y = 0, (2.17a)

(hu)t + (hu2)x + (huv)y +
(

1
2
εh2 cos ζ

)
x

= hSx, (2.17b)

(hv)t + (huv)x + (hv2)y +
(

1
2
εh2 cos ζ

)
y

= hSy, (2.17c)

where the superscript b is now dropped and the source terms are

Sx = sin ζ − µ(u/|u|) cos ζ − εbx cos ζ,

Sy = −µ(v/|u|) cos ζ − εby cos ζ,

}
(2.18)
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to order εµ. The conservative system (2.17) has exactly the same mathematical
structure as the shallow-water equations of hydrodynamics (e.g. Stoker 1957) and
the isentropic gas-dynamics equations (e.g. Whitham 1973) when the exponent of the
polytropic gas law equals 2. The key differences are that there are quite complicated
source terms on the right-hand side of the equations and the pressure terms are
multiplied by the factor cos ζ to account for the reduced-gravity component on the
inclined slope. It is significant that when the internal angle of friction, φ, is equal to
the basal angle of friction, δ, the one-dimensional Savage-Hutter theory (1989, 1991)
also degenerates to the shallow-water equations. All the results for the hydraulic
model, therefore also hold for the Savage–Hutter model provided there are no jump
stress transitions.

The analogy with shallow-water theory and gas dynamics is, as we shall see later,
a very good one, and helps many frequently observed phenomena to be understood.
The theory of characteristics (Courant & Hilbert 1962) implies that (2.17) is a non-
strictly hyperbolic system of equations with sound velocity c =

√
εh cos ζ . The sound

velocity is equal to zero when h =0, so the avalanche boundary where the thickness
equals zero therefore has the same degenerate mathematical structure as the vacuum
boundary in gas dynamics. Particle-free regions are therefore termed granular vacua.
A granular Froude number may be defined as the ratio of the velocity to the local
wave speed of the flow:

Fr =
|u|√

εh cos ζ
, (2.19)

which distinguishes between supercritical (shooting) flows, for Fr > 1, and subcritical
flows where Fr < 1. Many granular avalanches are expected to be supercritical, because
the scalings imply Fr ∼ 1/

√
ε � 1. This suggests that shock waves, at which there are

sudden jumps in the velocity and thickness, should be common features of these flows.
In the derivation of the field equations (2.17), h and u are assumed to be continuously
differentiable in position and time. These conditions are not met when a shock forms
and instead a control-volume argument (e.g. Chadwick 1976) is used to derive mass
and momentum jump conditions:

[[h(u · n − vn)]] = 0, (2.20a)

[[hu(u · n − vn)]] +
[[

1
2
εh2 cos ζ

]]
n = 0, (2.20b)

which hold at a non-material singular surface propagating with speed vn along
the local normal n. The jump bracket [[f ]] = f + − f − is the difference between the
enclosed function on the forward and rearward sides of the singular surface and
the evaluation position is denoted by the superscripts ‘+’ and ‘−’, respectively. The
jump conditions (2.20) have exactly the same form as those of the shallow-water and
isentropic gas-dynamic equivalents and are not affected by the source terms, which
become vanishingly small as the control-volume shrinks onto the singular surface.

3. Granular bores on non-accelerative slopes
Savage (1979) observed stationary granular jumps and Gray & Hutter (1997)

saw propagating normal shocks in chute flows and at the free surface of stratification
pattern experiments in granular heaps, silos and flows in partially filled slowly rotating
drums. Savage (1979) presented the first analysis of the stationary granular jump and
we will show here that the propagating normal shock is mathematically equivalent
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Figure 1. A sequence of photographs showing the upslope propagation of a granular bore,
or normal shock, on a non-accelerative slope inclined at 27◦ to the horizontal. The images
are taken every 0.52 s. The empty chute is shown top-left. A thin spatially uniform avalanche
of dark (Werner’s non-parielle) grains flows rapidly downslope (left-middle) and hits a wall,
which is out of shot on the bottom-right side. A granular bore develops and propagates
upslope at approximately constant speed, bringing the avalanche rapidly to rest and increasing
its thickness by a factor of twelve as it does so. The marks normal to the chute are 17.9 cm
apart. An animation of the experiment can be seen at www.ma.man.ac.uk/˜ngray.

to a bore in classical hydrodynamics, which lends considerable weight to the system
(2.17) and the analogy with the shallow-water equations.

Figure 1 shows a sequence of photographs of a normal shock wave in an avalanche
of non-pareille† grains. The particles enter a rectangular-cross-section channel,
inclined at 27◦ to the horizontal, and flow downslope until they hit a wall, which is
out of shot at the bottom-right side. A shock wave develops and propagates
upslope, bringing the particles rapidly to rest and causing the avalanche to increase
dramatically in thickness. The flow has a number of important features. First, the
avalanche is spatially and temporally uniform on either side of the shock, and secondly
the wave propagates in the opposite direction to the flow at almost constant speed.

These observations suggest a one-dimensional solution with constant uniform states
on either side of a travelling discontinuity. For the simple friction law used here, such
solutions can be constructed when the slope inclination angle is equal to the basal
angle of friction, ζ = δ, so that the source term Sx = 0 in (2.17b). For rough beds, there

† Non-pareille sugar grains, commonly known as ‘100’s and 1000’s’ or ‘Sprinkles’, are roughly
spherical in shape with a diameter of about 1mm, and were supplied by Werner’s Dragéefabrik,
Tornesch, Germany.
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is a range of angles for which steady flows develop (Pouliquen 1999; Pouliquen &
Forterre 2002), but a more complex friction law must be adopted. Any slope where
the gravitational acceleration is exactly balanced by the basal friction, Sx = 0, is
non-accelerative and the field equations (2.17) admit constant uniform state solutions

x > ξ : h(x, t) = h+, u(x, t) = u+,

x < ξ : h(x, t) = h−, u(x, t) = u−,

}
(3.1)

on either side of the discontinuity at x = ξ . The two states may be coupled together
by the mass and momentum jump conditions (2.20), which reduce in one dimension
to

[[h(u − vn)]] = 0, (3.2a)

[[hu(u − vn)]] +
[[

1
2
εh2 cos ζ

]]
=0. (3.2b)

Assuming that after the shock the grains come to rest, u+ = 0, the jump conditions
imply that the shock propagates with velocity

vn = −

√
ε
h−

h+

(
h+ + h−

2

)
cos ζ . (3.3)

This is equivalent to the hydrodynamic bore solution given by Stoker (1957, p. 323),
with an extra cos ζ coefficient to account for reduced gravity. In the laboratory ex-
periments the rearward and forward flow thickness are h− = 0.61 cm and h+ = 7.29 cm,
respectively. Using (3.3) these values predict a shock velocity vn = −16.99 cm s−1, which
lies within 10% of the measured velocity of −15.4 cm s−1. Given the simplicity of the
model, this is a very good leading-order approximation, and we therefore term the
normal shock in figure 1 a granular bore. During rapid motion, granular materials
dilate in response to inter-particle collisions, but, as the particles cross the shock, the
collisional energy is rapidly attenuated and the grains settle into a denser packing.
A simple mass balance argument, with the effects of density change included, is
sufficient to show that when both the thickness and density increase across the shock
the jump will propagate upslope at a slower speed. A relatively small density change
of about 5% is sufficient to explain the difference between observed and computed
shock speeds.

In the experiments there is a smooth transition between the constant uniform states
on either side of the shock. This internal structure is not captured in the current
model. However, it may yield important information for future theories that have a
full constitutive model for the deviatoric stress. Two distinct types of shock have
been observed in the experiments. At low Froude numbers the shock is diffuse as
one might expect, but at high Froude numbers the shock is so sudden that some of
the incoming particles rebound creating a small recirculating zone on the front face
that propagates upslope with the shock.

4. Oblique shocks
The analogy between the system (2.17) and the isentropic gas-dynamics equations

suggests that oblique shocks, which are common features of aerodynamic flows,
should also be observed in shallow granular flows. This is indeed the case. Figure 2(a)
shows a photograph of a steady-state oblique shock on a nearly non-accelerative slope
inclined at 33◦ to the horizontal. The downslope coordinate lies along the horizontal
axis, so that, following the gas-dynamic convention, the flow is from left to right. The
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ψ β

h–, u–

h+, u+n

(a)                                                                                         (b)

Figure 2. (a) A photograph of an oblique shock on a plane chute inclined at ζ = 33◦ to
the horizontal. A 1/50 s exposure is used to produce streaklines aligned with the motion.
(b) A schematic diagram of the flow. The avalanche flows downslope from left to right and
is deflected by the sidewall, which is inclined inward at an angle ψ = 25◦ to the downslope
direction. A linear oblique shock develops at an angle β = 29◦, creating a very thin layer of
deflected material close to the wedge. The material in this layer is thicker than the incoming
avalanche and flows parallel to the wedge.

shock is initiated by a sudden change in the sidewall angle, which points inward at
an angle ψ = 25◦ in the lower section of the chute. The oblique shock lies at an angle
of approximately β = 29◦ and the flow on the forward side of the shock is therefore
confined to a very thin layer close to the deflecting sidewall, rather like hypersonic
gas-dynamics flows.

In the classical oblique shock problem the field equations are satisfied by constant
uniform state solutions, that are coupled together on either side of the shock by
jump conditions. These simple solutions are a consequence of the fact that there are
no source terms in the field equations. In general, the source terms (2.18) preclude
constant state solutions to (2.17) for granular flows. However, the experiments suggest
that for predominantly downslope flow on a flat-bedded nearly non-accelerative chute,
the source terms may be sufficiently small that constant uniform thickness and velocity
solutions, h+, h−, u+, u−, are a good local approximation to the flow. That is, we shall
assume that Sx and Sy are order εµ, when ζ � δ and u � v, so that the source terms
can be neglected in (2.17).

On the rearward side of the shock the velocity, u− =(u−, 0), whilst on the forward
side the non-penetration condition requires that the flow is parallel to the wall, u+ =
|u+|(cos ψ, sinψ). Uniformity of the flow implies that the shock lies along a straight
line, which is inclined at an angle β to the downslope axis with local normal n =
(−sinβ, cosβ). The mass jump condition and the tangential and normal components
of the momentum jump condition (2.20) therefore imply

h+|u+| sin(β − ψ) = h−u− sin β, (4.1a)

h+|u+|2 cos(β − ψ) sin(β − ψ) = h−u−2
cos β sin β, (4.1b)

h+|u+|2 sin2(β − ψ) + 1
2
ε cos ζ (h+2 − h−2) = h−u−2 sin2 β. (4.1c)

Substituting for h+|u+| sin(β −ψ) from (4.1a) equation (4.1b) implies that the forward
and rearward velocity components parallel to the shock are unaffected by the jump
in thickness, i.e. |u+| cos(β − ψ) = u− cosβ . Eliminating sin(β − ψ) between (4.1a) and
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(4.1c), it follows that the shock inclination angle satisfies the relation

sin β =
1

Fr−

√
1

2

h+

h−

(
h+

h− + 1

)
. (4.2)

This takes exactly the same form as that of an oblique hydraulic jump (Chaudhry
1993, p. 173) except that the granular Froude number (2.19) accounts for reduced
gravity. In the laboratory experiment, shown in figure 2, the incoming flow is 4 mm
thick and has a velocity of 1.05 m/s, which implies that the granular Froude number
Fr− = 5.79. On the forward side of the shock the flow depth rapidly rises to 14 mm,
so the thickness ratio h+/h− =3.5 and equation (4.2) predicts that the oblique shock
should be at an angle β =29.04◦. This is in suprisingly good agreement with the
measured angle of approximately 29◦, especially considering that the incoming flow
is only a few particle diameters thick and we have neglected source terms. Unlike the
normal shock, the particles are still in a rapidly moving agitated state on the forward
side of the shock and there are no significant density changes in this case.

5. Rapid granular flow past obstacles
The flow of granular materials past obstacles is of considerable practical interest in

industrial processes, and it is especially important for the design of defences to protect
buildings and structures from snow-slab avalanches, debris flows and rockfalls. By
their very nature obstacles generate regions of compression and expansion in the
avalanche, and a rich array of flow phenomena may be observed in laboratory
experiments. These features are not only interesting in their own right, but also
provide a crucial source of detailed constitutive information that can be used to test
and improve existing models for rapid granular free-surface flows. It is of particular
interest to see if the simple stress decomposition, into an isotropic pressure field and a
less important deviatoric part in (2.2), is sufficient to qualitatively describe these types
of flow, or whether there are additional effects that require the jump stress transitions
in the Savage–Hutter (1989) theory.

5.1. Flow past a forward-facing pyramid

The flow of a granular avalanche past a tetrahedral pyramidal obstacle on a plane
chute inclined at 42◦ to the horizontal is shown in figure 3. The shape of the obstacle
is based on a defence which has been proposed for the protection of the Schneeferner
Haus on the Zugspitze in Germany. The footprint of the pyramid in figure 3 is almost
equilateral in shape, with sides of about 37 cm in length. The pyramid is aligned so
that one of its corners points upslope and its apex is very slightly off centre, with a
normal height of 16.5 cm above the chute. The granular material, which is composed
of black and white plastic pellets of 2–3 mm in size, is released onto the plane from
a hopper on the left-hand side and flows downslope from left to right (following the
gas-dynamics convention). The avalanche front propagates rapidly downslope and
remains laterally uniform prior to impinging on the pyramid. As the avalanche hits
the topography the flow increases in thickness and is deflected, so that it lies parallel
to the face in a very similar manner to the oblique shocks in § 4. A long-time exposure
has been used to reveal the particle paths and hence the shock-like structures, which
can clearly be identified in a very thin layer close to the topography in the middle-left
photo of figure 3.

Outside the oblique shock region the avalanche continues to flow downslope and is
unaffected by the presence of the obstacle, which is typical of supercritical hyperbolic
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Figure 3. A series of photographs showing the development of a supercritical granular
free-surface flow around an upslope-facing pyramid that lies on a plane inclined at 42◦

to the horizontal. The clock hand performs one revolution per second and the images are
approximately 0.128 s apart. The flow is from left to right and a shutter speed of 1/30th of a
second makes the particle paths visible. An oblique shock develops on each side of the pyramid
and on the leeside two expansion waves are formed and a grain-free region opens up. A fully
developed steady-state regime is reached in the bottom-right image.

flows. The avalanche front therefore remains laterally uniform a sufficiently large
distance away. An interesting feature of the flow is that the position of the deflected
front is slightly further downslope that the undeflected part. This has also been
observed on the geophysical scale. Jóhannesson (2001) surveyed an avalanche which
had been deflected by a dam at Flateyri in north-western Iceland. He found that
the deflected stream came to rest 100 m further downslope than the undeflected part.
This effect, although small, may be a critical consideration for designing avalanche
defences.

As the avalanche passes the transition between the front faces and rear face of
the pyramid the topography changes so rapidly that the avalanche briefly becomes
airborne and the particles follow a ballistic trajectory. This effect is confined to a very
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small region close to the rear corners of the pyramid. The avalanche is split into two
separate streams and the front rapidly moves out of shot in the subsequent images.

Within a second of opening the hopper a steady-state flow develops. The final
distribution is shown in the bottom-right photo of figure 3. After the flow passes the
obstacle the thicker deflected flow is free to expand laterally and it slowly spreads
out. The pressure is not strong enough to immediately push the particles into the
region on the leeside of the pyramid and a large grain-free granular vacuum forms.
In the experiments the clock is placed within the grain-free region and it is therefore
protected from the avalanche. This effect is of crucial importance on a civil engineering
scale, where obstacles can be used to protect buildings and structures from snow-
slab avalanches and debris flows. This has been known for a long time: there is a
17th century Church in Davos, Switzerland (Ammann, Buser & Vollenwyder 1997,
p. 134), which has been deliberately built with a wedge-like form to protect it from
avalanches.

5.2. Computational method

To compute the flow around a pyramidal obstacle it is necessary to use high-resolution
shock-capturing numerical methods to integrate the system (2.17). The development
of these methods has a long history starting with the classic papers of Godunov
(1959), Van Leer (1979), Harten (1983) and Yee (1987), and there are now a wide
range of textbooks on the subject (e.g. Le Veque 1990; Godlewski & Raviart 1996;
Kröner 1997; Toro 1997). Here we have opted to use the recent high-resolution
shock-capturing non-oscillatory central (NOC) scheme first introduced by Nessyahu
& Tadmor (1990) and extended to multi-dimensions by Arminjon & Viallon (1995,
1999); Jiang & Tadmor (1998) and Lie & Noelle (2003).

Tai et al. (2002) have used the NOC scheme to compute the evolution of the one-
dimensional parabolic-cap similarity solution of the Savage–Hutter (1989) equations,
and have found that it produces accurate results even in domains where grain-free
vacuum regions are present. While it is possible to explicitly track the moving vacuum
boundary in one dimension (Tai et al. 2002) this becomes much more complicated
in multi-dimensions. The two-dimensional NOC scheme of Jiang & Tadmor (1998)
is therefore used to solve the conservative system (2.17) over the entire domain
including any vacuum regions. This approach provides a simple accurate scheme, but
the position of the vacuum boundary is not resolved explicitly.

Full details of the NOC method are given by Jiang & Tadmor (1998) and for
brevity they are not repeated here. The scheme requires the system to be rewritten in
terms of conservative variables, which are the avalanche thickness h and the depth-
integrated down- and cross-slope momentum, m =hu and n= hv. In vector form,
equations (2.17) then transform to

wt + f (w)x + g(w)y = s, (5.1)

where w = (h, m, n)T is the vector of conservative variables. The downslope and
cross-slope flux vectors, f and g, and the source vector, s, are given by

f =


 m

m2/h + ε cos ζh2/2

mn/h


 , g =


 n

mn/h

n2/h + ε cos ζh2/2


 , s =


 0

hSx

hSy


 . (5.2)

The source terms, Sx and Sy , defined in (2.18), are of crucial importance, as the basal
topography gradient terms determine the dynamic effect of the obstacle on the flow.
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To evaluate the gradients, the normal height, z = b(x, y), of the topography above the
inclined plane must be prescribed. In the case of the pyramidal obstacle the normal
height

b =




bc

(x − xa)

(xc − xa)
− (xb − xa)

(xc − xa)

y

yb

, y > 0, y < yb

(x − xa)

(xb − xa)
, y > yb

(x − xc)

(xb − xc)
,

bc

(x − xa)

(xc − xa)
+

(xb − xa)

(xc − xa)

y

yb

, y < 0, y > yb

(xa − x)

(xb − xa)
, y < yb

(xc − x)

(xb − xc)
,

bc

(x − xb)

(xc − xb)
, x < xb, y <yb

(x − xc)

(xb − xc)
, y > yb

(xc − x)

(xb − xc)
,

(5.3)

where (xa, 0, 0) is the foremost point of the pyramid, (xc, 0, bc) is the central point, and
(xb, ± yb, 0) are the coordinates of the remaining two vertices. An equal horizontal and
normal length scaling of 10 cm is used to convert the geometry of the experiment into
non-dimensional units. The pyramid is therefore given by xa =2, xc = 3.95, xb =5.3,
yb =1.85 and bc =1.65 non-dimensional units.

The source terms are essentially innocuous and can easily be incorporated directly
into the NOC scheme, except when u = 0. When u = 0 the direction of the Coulomb
frictional resistance to motion, u/|u|, is not defined in (2.18). This is a case of the
basic physics in the model breaking down, and we require the direction of the force
to be oriented to resist the motion that the avalanche would have if the Coulomb
resistance were not present. To approximate this, we assume that u/|u| = 0 when u = 0
in the predictor-step of the NOC scheme to compute an intermediate value u∗. In the
full step u∗ is then used to determine the direction of the frictional resistance.

The computational domain is rectangular in shape and extends over the range
0 � x � 12 and −5 � y � 5. There are 200 grid nodes in each direction. A uniform
inflow thickness and velocity is prescribed along x = 0, whilst outflow conditions are
prescribed along all the other boundaries. For all the simulations presented here, the
initial thickness is based on the first experimental image, whilst the velocity is assumed
to be equal to the inflow velocity. In grain-free regions the avalanche thickness
is assumed to be zero, h(x, y, 0) = 0, and hence the depth-integrated momentum
m(x, y, 0) = 0 and n(x, y, 0) = 0.

5.3. Computed flow past a forward-facing pyramid

The evolution of the thickness distribution as the avalanche flows past the forward-
facing pyramid is shown in figure 4, at a sequence of equal time steps approximately
corresponding to those in the experiment. The experimental inflow conditions were
reproduced by prescribing an inflow thickness of 0.1 units and velocity of 1.6 units,
which implies that the inflow Froude number is 5.86. The chute was inclined at
ζ = 42◦ to the horizontal and the basal angle of friction δ = 32◦. Although the
vacuum boundary is not explicitly resolved, some idea of its position can be obtained
by shading the region in which the avalanche thickness is above the minimum grain
size of 2 mm, which corresponds to 0.02 non-dimensional units. As in the experiments
the avalanche accelerates downslope and the flow remains purely one-dimensional,
so that the front is laterally uniform prior to hitting the obstacle. At the pyramid the
flow is divided into two streams and deflected to form oblique shock-like structures
at which the thickness increases. As the avalanche flows past the back of the obstacle
the flow expands and the thickness decreases again. The simulation shows that the
position of the deflected front is slightly further downslope than the undeflected front
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Figure 4. The evolution of the avalanche thickness distribution is illustrated for the upslope-
facing pyramid at a sequence of time steps. The chute is inclined at 42◦ to the horizontal
and the dot-dashed line indicates the position of the pyramid. At the inflow, at x = 0, the
avalanche is 0.1 units thick and flowing at a velocity of 1.6 units, implying Fr = 5.86. The
thickness contours increment in 0.04 unit intervals starting from 0.02 units, and thicker lines
are used for the 0.1, 0.3, 0.5, 0.7 unit contours. For comparison with the experiment the shaded
region shows the area in which the avalanche thickness is greater than the minimum particle
size of 2mm or 0.02 non-dimensional units. The time steps are chosen to be 1.2734 units
apart so that the images are approximately the same interval apart as in the experiment. One
non-dimensional length unit corresponds to 10 cm in the experiment.

at t = 2.55 units, which is in agreement with experiment and observations at the
geophysical scale (Jóhannesson 2001). The primary reason for this is that the increase
in thickness after the shock provides a greater pressure to push the front downslope.
In the experiments the avalanche briefly becomes airborne as it flows over the rear
side of the pyramid. This is not modelled in this simulation as it is implicitly assumed
that the avalanche always experiences a basal Coulomb drag from being in contact
with the slope. Although this is neglected it does not appear to be a significant effect
in this situation.
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At t = 6.37 units the flow has attained a steady state. The system of equations (2.17)
is sufficient to capture all the qualitative features of the flow, such as the formation
of the oblique shocks, expansion waves and the granular vacuum on the leeside of
the pyramid. The model is also in very good quantitative agreement with experiment,
both in the position of these features and the time scale for their formation. This
suggests that the Savage–Hutter (1989) model could be simplified to remove the
jump stress transitions between regions of convergence and divergence, as these are
expected to cause additional shocks, which are not observed in experiment.

5.4. Flow past a rearward-facing pyramid

Many avalanche defence structures have a blunt face facing upslope, rather than a
sharp one as in the forward-facing pyramid. The flow around such obstacles is more
complex and new physical phenomena are introduced. To investigate this in greater
detail we have taken the tetrahedral pyramid and rotated it by 180◦ as shown in
figure 5. In non-dimensional coordinates the apex of the pyramid lies at (5.05, 0) and
has a height of 1.65 units. The other vertices lie on the inclined plane at (3.7, ±1.85)
and (7, 0). A series of photographs of the experiment are shown in figure 5 and
the corresponding computations of the avalanche thickness are shown in figure 6.
The chute is inclined at ζ = 34◦ to the horizontal and at the inflow the avalanche is
assumed to be 0.1 units thick and flows at a velocity of 1.1 units, until t = 10.5 units
when the hopper empties and h(0, y, t) is set to zero.

During the initial part of the flow, t < 10.5 units, the avalanche flows around the
pyramid and develops into a steady state. When the flow first impinges on the front
face of the pyramid the topography gradients are sufficient to bring the material to
rest and form a thick stationary deposit, or dead zone. This is a new feature of the
flow, which does not develop in gas-dynamic or shallow-water flows. In such dead
zones the Coulomb basal friction balances the basal topography gradients and the
internal pressure to create a stationary deposit. The dead zone grows in size until
it saturates, creating a detached shock upslope of the obstacle which deflects the
flow into two streams. The width of these streams is greater than in the case of
the forward-facing pyramid and a considerable amount of material cascades over
the edges of the front face. The simulations and experiment are nevertheless in good
qualitative and quantitative agreement with one another, indicating that the simplified
model (2.17) is sufficient to capture the formation of the dead zone. On the leeside
of the pyramid a granular vacuum forms; however, it is much narrower and affords
much less protection than the forward-facing pyramid.

When the inflow is shut off a second vacuum boundary propagates down the chute
as shown at t = 11.46 units in figure 6. The front is laterally uniform except where the
flow is deflected by the detached shock in front of the dead zone. As the front propag-
ates past the obstacle the pressure applied to the front face of the dead zone ceases
and it expands slightly upslope. By t = 19.55 units the cascading flow over the edges is
starting to be pinched off as the vacuum boundary on the upslope and leeside of the
pyramid approach each other. At subsequent times the experimental flow is reduced to
individual particles trickling over the edges of the front face. While the hypothesis of
an incompressible continuum breaks down, equations (2.17) still predict that material
is transported over the edges. Although the dynamics of the trickling flow are not mod-
elled well, useful predictions can still be made about the permanent deposit that is left
on the blunt face of the pyramid, as shown in figure 7. The overall shape and size of the
stationary deposit at t = 45 units is in good agreement with experiment. This is a novel
feature of the flow which does not occur in gas-dynamics or shallow-water theory.
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Figure 5. A series of photographs showing the development of a supercritical granular
free-surface flow around a downslope-facing pyramid that lies on a plane inclined at 34◦ to the
horizontal. The clock hand performs one revolution per second. The flow is from left to right
and a shutter speed of 1/30th of a second makes the particle paths visible. A normal shock
develops on the blunt face and propagates slowly upslope bringing the material behind it to
rest. This creates a stationary dead zone in front of the pyramid that diverts the flow, whilst
on the leeside a grain-free region opens up. A fully developed steady-state regime is reached
in the bottom-left image. A striking feature is that, when the inflow ceases, the material in the
dead zone remains on the front face of the pyramid.
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Figure 6. The evolution of the avalanche thickness distribution is illustrated for the
downslope-facing pyramid at a sequence of time steps. The chute is inclined at 34◦ to the
horizontal and the dot-dashed line indicates the position of the pyramid. At the inflow, at x = 0,
the avalanche is 0.1 units thick and flowing at a velocity of 1.1 units, implying that Fr = 3.82.
The thickness contours increment in 0.04 unit intervals starting from 0.02 units, and thicker
lines are used for the 0.1, 0.3, 0.5, 0.7 unit contours. For comparison with the experiment the
shaded region shows the area in which the avalanche thickness is greater than the minimum
particle size of 2mm or 0.02 non-dimensional units. The images are approximately the same
interval apart as in the experiment.
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Figure 7. (a) The final computed thickness distribution of the granular material remaining in
the dead zone, at t = 45 time units is illustrated using the same contour intervals as before. For
comparison with the experiment (b) the shaded region shows the area in which the avalanche
thickness is greater than the minimum particle size of 2mm or 0.02 non-dimensional units.

6. Conclusions
We have generalized the hydraulic theory for granular avalanches (Grigorian et al.

1967; Kulikovskii & Eglit 1973; Eglit 1983) to model three-dimensional depth-
averaged flows over obstacles. Although the theory is relatively simple, we have
shown, by comparing exact and numerical solutions with experiments, that it contains
sufficient physics to be able to capture the formation of normal shocks, oblique shocks,
granular vacua and dead zones, which are frequently encountered in rapid granular
free-surface flows. The small-scale laboratory results show that the stress field is
dominated by a hydrostatic pressure field and a deviatoric stress, which transmits the
basal shear traction through the avalanche depth.

The small-scale laboratory results show that there is no evidence of sharp stress
transitions, which are expected to give rise to additional shocks at the boundary
between converging and diverging flow. There is also no evidence for significant
changes in the limiting stress states at these small scales. Changes in the earth-pressure
coefficient are more likely to occur in geophysical-scale run-out events, where the
depth of the avalanche and the stresses are significantly greater. Some evidence for
this is provided by Hungr (1995), who performed numerical simulations of the
620 m high run-up of the Avalanche Lake rock avalanche (Evans, Hungr & Enegren
1994) using both hydraulic and Savage–Hutter models. He was only able to model
the correct run-up by letting the earth-pressure coefficient vary during the flow
over a range of 0.24 to 4.2. There may, however, be other explanations for this
long run-out behaviour. On a purely theoretical level, equations (2.17) have nice
properties, as they eliminate concerns about rotational symmetry of the earth-pressure
coefficients and an additional velocity-dependent drag can be incorporated into the
theory without the earth-pressure coefficients becoming complex valued (Gray & Tai
1998).

A high-resolution shock-capturing non-oscillatory central scheme has been deve-
loped to solve the system (2.17), and it has been used to compute the flow around
a forward- and rearward-facing tetrahedral pyramid. These shapes are typical of
snow-slab avalanche defences, such as the one proposed for the protection of the
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Schneeferner Haus on the Zugspitze. The code can easily be applied to other obstacles,
and the qualitative and quantitative agreement between theory and experiment are
sufficiently good to suggest that it may be used as a tool to optimize the design of
real avalanche defences.
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